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Abstract. The work is devoted to capillary phenomena in miscible liquids under the assumption that they have
a constant and the same density. The model consists of the heat equation, diffusion equation, and the Navier-
Stokes equations with the Korteweg stress. We study several configurations corresponding to the microgravity
experiments planned for the International Space Station. The basic conclusion of the numerical simulations is that
transient capillary phenomena in miscible liquids exist and can produce convective flows sufficiently strong to be
observed experimentally. In particular, there exists a miscible analogue to the Marangoni convection where the
temperature gradient is applied along the transition zone between two fluids. Convection also appears if, instead
of the temperature gradient, the case where the width of the transition zone varies in space is considered. Finally,
similar to the immiscible case, miscible drops move in a temperature gradient.
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1. Introduction

In this work we study transient interfacial phenomena in miscible liquids where a thermody-
namically stable interface does not exist, and after some time the mixture becomes homogen-
eous in space due to diffusion. If the diffusion coefficient is sufficiently small, we can expect
existence of interfacial phenomena, even if they are necessarily transient and depend on time.

This question was first discussed by Korteweg in 1901 [1] who introduced additional
terms in the equations of motion to describe volume forces arising because of the long-range
molecular interaction in liquids. In more recent works [2], [3] this type of model is derived
by thermodynamical consideration under the assumption that the free energy depends on the
square of the density or of the composition gradient.

To study the behavior of miscible liquids we use the model which consists of the Navier-
Stokes equations with the Korteweg stress
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and of the diffusion equation and heat equation with convective terms
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are the components of the Korteweg stress tensor F, vx and vy are the horizontal and the
vertical components of the velocity, p is the pressure, ρ is the density, cp the heat capacity, d

the diffusion coefficient, λ is the thermal conductivity, T is the non-dimensional temperature,
µ the dynamic viscosity, c the composition, i.e., the function which changes between 0 and 1
such that c = 0 corresponds to one liquid and c = 1 to the other.

We assume in this work that the density is constant and consider the medium as incom-
pressible,

∂vx

∂x
+ ∂vy

∂y
= 0. (1.5)

The constant-density approximation will also allow us to study specifically the Korteweg
stresses.

We consider the no-slip boundary conditions for the velocity,

vx |S = vy |S = 0 (1.6)

and the no-flux boundary condition for the composition,

∂c

∂n
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S

= 0, (1.7)

where S is boundary of the domain. The boundary condition for the temperature will be
specified below.

The quantity k in the Korteweg stresses plays an important role in this theory. It is shown
in [2] that it is determined by the free-energy-density dependence on the square of the density
gradient. If we consider the case of a binary fluid with constant density but with a variable
composition, as we do in this work, we can put (see [3])

k = ∂f (c, T , α)

∂α
,

where α = |∇c|2. The temperature dependence of k couples the Equation (1.4) with the
equations of motion (1.1), (1.2). We neglect the viscous heat dissipation in (1.4) since the
fluid velocity is small.

Various questions related to the behavior of miscible liquids are studied experimentally and
theoretically in [2]–[11]. The basic goal of this work is to study the influence of temperature
gradients on diffuse interfaces in miscible liquids. As pointed out above, we assume that the
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Figure 1. Experimental configuration.

density is constant and consider the case where the Korteweg parameter k or the diffusion
coefficient d depend on the temperature. We will see that both of them can be at the origin of
the effective interfacial tension in miscible liquids though in some cases they act differently.
Finally, in view of the experiments proposed for the International Space Station, some of the
simulations in this work are done with variable viscosity (see below).

2. Description of experiments

Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS) is an investiga-
tion planned for the International Space Station to test how concentration and temperature
gradients in a miscible polymer/monomer system can cause convection in the absence of
buoyancy-driven convection.

A sharp transition zone between poly(dodecyl acrylate) and dodecyl acrylate, which are
miscible, will be created by rapidly photopolymerizing dodecyl acrylate in a rectangular
cuvette We will illuminate the reactor with 365 nm UV light, using masks that create a
known interfacial profile between monomer and polymer. In some experiments a temperature
gradient will be applied parallel to the transition zone. Figure 1 shows a schematic of the
experimental set-up and how the mask produces two regions – one of unreacted monomer and
one of hot polymer. The fluid flow will be measured by Particle Imaging Velocimetry (PIV).
The temperature field will be measured with an array of thermistors, and the width of the
transition zone will be measured optically.

In this work we model the proposed experiments where there is a temperature gradient
along the transition zone or where the width of the transition zone varies in space. We will
study also behavior of miscible drops in a temperature gradient.
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Figure 2. A fragment of the mesh. The control volume VA is gray.

3. Numerical method

We rewrite the problem (1.1)–(1.5) in a coordinate-free form that is better adapted to describe
the numerical method based on a Lagrangian mesh:

ρ
dv
dt

= ∇ · (S + F), (3.1)

ρ
dc

dt
= ∇ · (d∇c), (3.2)

ρcp

dT

dt
= ∇ · (λ∇T ), (3.3)

∇ · v = 0, (3.4)

where
S = −pI + µ

[∇v + (∇v)T
]
,

F = k [(∇c · ∇c)I − ∇c∇c] ,

a·b is the scalar product, ab is a dyadic product, I is the unit tensor, d�/dt ≡ ∂�/∂t+∇·(v�).
For numerical simulations of the problem (3.1)–(3.4) we apply the finite-volume method.

We use an adaptive nonorthogonal mesh M × N (i = 1, ...,M, j = 1, ..., N). Its fragment
is shown in Figure 2. Each cell of the mesh (ABCD in Figure 2) consists of two triangular
elements (ABC and ACD). The direction of the cell diagonal alternates in the neighboring
cells.



Modelling of diffuse interfaces with temperature gradients 325

The structure of the equations suggests to define the velocity, the composition, and the
temperature at the nodes of the mesh (nodal variables), and the components of the stress
tensors S and F are defined inside the triangular elements. Equation (3.4) is also solved at
triangular elements.

For each node of the mesh we introduce a control volume as a polyderon with the sides
passing through the middle points of the sides and diagonals of the cells. In Figure 2 the
control volume VA is shown for the node A.

We integrate the Equations (3.1)–(3.2) over each control volume. We have for the node A:
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where SA is a boundary of a VA, n is external normal to SA, n is the number of the time step.
Note that the flux terms in the right-hand sides of (3.5)–(3.7) are taken implicitly in time.

The left-hand sides of the Equations (3.5)–(3.7) are approximated as follows
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where
∑

i is a sum over all triangles in the control volume VA (obviously
∑

i Vi ≡ VA).
The integrals in the right-hand sides of the Equations (3.5)–(3.7) are taken over the surfaces

of control volumes. To compute these, we need to know the components of the stress tensors,
and the components of the temperature and concentration gradients. In what follows we will
use a discretization of ∇c, ∇T , ∇ · v, and ∇v in triangular elements. For the sake of brevity
we introduce the notation

∇ � �, (3.11)

where � is scalar or vector nodal variable, � denotes a distributive operation admissible for
�. We use a linear interpolation of the nodal variable � inside each triangle ABC:

� = A · r + b, (3.12)

where r = inxn, (summation convention over repeated subscripts is used), b is a constant
tensor of the same rank as �, and the rank of A is one order higher. Substituting (3.12) in
(3.11) gives

∇ � � = in � ∂(A · imxm + b)

∂xn

= in � (A · in). (3.13)
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For the vertices of the triangle ABC we can write


�A = A · rA + b
�B = A · rB + b
�C = A · rC + b

, (3.14)

or {
�1 = A · r1

�2 = A · r2
, (3.15)

where �1 = �B − �A, �2 = �C − �A, r1 = rB − rA, r2 = rC − rA. From (3.15) it follows
that

A = �mrm. (3.16)

The vectors r1, r2 and r1, r2 are called reciprocal vectors. It is known that rk · rm = δkm and
rmrm = rmrm = I, where δkm is the Kroneker delta symbol. For Cartesian coordinates r1, r2

can be written in the form
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Substituting (3.16) in (3.13), we obtain

∇ � � = rm � �m, (3.18)

or, explicitly

∇ � � = r1 � �1 + r2 � �2. (3.19)

The discretization of ∇ � � in (3.19) given in the triangle ABC is a linear combination of the
differences of its values at the vertices.

We note that (3.19) is a generalization of the simplest approximation

∇ � � = i1 � �B − �A

�x
+ i2 � �C − �A

�y
, (3.20)

written for the orthogonal mesh element on the nonorthogonal mesh element. Here �x =
xB − xA, �y = yC − yA. We emphasize that similar to the case of the orthogonal mesh (3.20)
the differences of nodal values in (3.19) are taken along the mesh lines. It will allow us to use
for the nonorthogonal mesh practically the same algorithms as for the orthogonal mesh (see
[12]).

Let us define the approximation of the integrals in the right-hand sides of the Equations
(3.5)–(3.7) over the interval FE at the boundary SA. The outward normal vector to it has the
form

n = r1

|r1| . (3.21)

Using (3.19) and (3.21), we can obtain the difference approximation of the right-hand sides
of the Equations (3.5)–(3.7) over FE. For example, we obtain the following approximation for
(3.7):∫

FE

λn · ∇T dS = 1

2
λDr1 · (r1T1 + r2T2). (3.22)
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Approximation of the integrals in right-hand sides of (3.5) and (3.6) can be obtained similarly.
Taking into account (3.18), we can represent the approximation of the continuity Equa-

tion (3.4) in the form

∇ · v = r1 · v1 + r2 · v2, (3.23)

where v1 = vB − vA, v2 = vC − vA.
To solve the discretized equations we use the iterative ADI method (see [13, Chapter 17]).

Consider the difference equations approximating the system (3.5)–(3.7) in the form:

�(f ) = 0, (3.24)

where the difference operator � includes also the discretization of the time derivative, the
components of the vector f includes v, c, T and p. Suppose that the initial distribution for f

is given. It can be the initial condition or the values at the previous time step.
The ADI method is based on the following iterative procedure. Let us introduce a parameter

τ playing the role of pseudo-time in the iterations and denote by k the iteration number. We
note that the number of iterations for a given time step n can be sufficiently large.

First of all we determine the residual f̂
k

at every node of the mesh,

f̂
k = τ�(f k). (3.25)

For the boundary nodes f̂
k

is found from the boundary conditions. For example, the boundary
condition f = const implies f̂

k = 0.
We split � into two parts,

� = �1 + �2,

where �1 contains a half of the expression in the left-hand sides of (3.5)–(3.7) and the integrals
in the right-hand sides taken over the upper and the lower parts of the boundary SA; �2 also
contains a half of the expression in the left-hand sides and the integrals taken over the lateral
parts of the boundary.

The continuity equation can also be split in accordance with (3.23). At the following steps
of the algorithm we find the iterations f̂

k+1/2
and f̂

k+1
from the equations
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(
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Finally we find f k+1:

f k+1 = f k + f̂
k+1

. (3.28)

We continue the iterations (3.25)–(3.28) while f̂
k

in (3.25) becomes sufficiently small.
We determine new positions of the nodes at each time step,

rn+1
A = rn

A + �tvn+1
A . (3.29)

If the flow leads to a strong deformation of the mesh, then it is reconstructed with the use of
spline approximation for nodal and triangular variables. For the values of parameters used in
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Figure 3. Computational domain and initial composition configuration.

these simulations the reconstruction of the mesh is usually done every several hundreds time
steps.

4. Plane transition zone

In this section we discuss results of the numerical simulations of the system (3.1)–(3.4) in
the rectangular domain −Lx/2 ≤ x ≤ Lx/2, −Ly/2 ≤ y ≤ Ly/2 with the plane transition
zone ε = ε1 = ε2 (Figure 3). We consider the no-slip boundary conditions for the velocity,
and the no-flux boundary conditions for the concentration. The boundary conditions for the
non-dimensional temperature are as follows:

∂T

∂y

∣∣∣∣
y=±Ly/2

= 0, T |x=−Lx/2 = 0, T |x=Lx/2 = 1. (4.1)

The initial conditions model the situation where two miscible fluids are separated in space.
The initial distribution of the composition is independent of x and it is a cubic polynomial
across the transition zone,

c|t=0 =




0, at −Ly/2 ≤ y < −ε/2
1

2
+ 3

4

(
2y

ε

)
− 1

4

(
2y

ε

)3

, at −ε/2 ≤ y < ε/2

1, at ε/2 ≤ y ≤ Ly/2

. (4.2)
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Figure 4. Maximal velocity (a) and maximal displacement (b), 1 - µ0 = 0·01 Pa · s, σc = 0, 2 -
µ0 = 0·1 Pa · s, σc = 0, 3 - µ0 = 0·01 Pa · s, σc = 5, 4 - µ0 = 0·1 Pa · s, σc = 5.

The initial condition for the temperature T is a linear function depending on x only. Initially
the liquid is unmovable, and the purpose of the simulations is to study convection induced by
capillary forces in miscible liquids.

The viscosity dependence on the composition and on the temperature is approximated by
the exponential

µ(c, T ) = µ0 eσcc−σT T , (4.3)

k(T ) and d(T ) are considered as linear functions of T ,

k(T ) = k0 − k1T , d = d0 + d1T . (4.4)

Everywhere below we consider the values of parameters which correspond to the real ex-
periments planned for the ISS: Lx = 3 cm, Ly = 6 cm, ρ = 103 kg/m3, λ = 0·05 W/(m · K),
cp = 2 × 103 J/(kg · K). The values of the parameters are estimated experimentally. In
particular, k0 and k1 are estimated by the spinning drop tensiometry. It is the experimentally
observed effective interfacial tension for miscible liquids [9].

We will characterize convection by the maximal velocity at each moment of time and by
the maximal displacement of a liquid particle. The second value is the most important for
the experiments because it shows the experimental precision which is necessary to detect the
convective motion.

To find the maximal displacement, we determine the displacement of each mesh node and
then take the maximal among them.

4.1. k DEPENDS ON TEMPERATURE

In this subsection we consider the case where k0 = 2·34 × 10−6 N, k1 = 1·26 × 10−6 N,
σT = 0, d0 = 2·5 × 10−5 kg/(m · s), d1 = 0.

Results of the calculations of the maximum of velocity Vmax as functions of µ0, σc and ε is
shown in Tables 1, 2 and Figure 4 (for the same values of parameters as in Table 1).

Figures 4a, 4b show the maximal velocity and the maximal displacement, respectively,
for the specific values of the parameters µ0 and σc. In all cases the maximal velocity is
reached during the first several seconds and after that it decreases rapidly in the beginning
and slowly later. As we can expect, the velocity is greater for the less viscous liquid. Curve
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Table 1. Vmax (cm/s), ε = 1·8 mm.

µ0, (Pa · s) σc

0 1 2 3 4 5

0·01 0·224 0·164 0·106 0·0585 0·0313 0·0169

0·025 0·132 0·0883 0·0509 0·0261 0·0133 0·00704

0·05 0·0809 0·0505 0·0275 0·0137 0·00684 0·00359

0·075 0·0584 0·0354 0·0189 0·00928 0·00461 0·00241

0·1 0·0457 0·0273 0·0144 0·00703 0·00348 0·00182

Table 2. Vmax (cm/s), ε = 0·9 mm.

µ0, (Pa · s) σc

0 1 2 3 4 5

0·01 0·365 0·272 0·177 0·0969 0·0487 0·024

0·025 0·224 0·153 0·0884 0·0441 0·0209 0·01

0·05 0·142 0·0905 0·0489 0·0234 0·0108 0·00513

0·075 0·105 0·0647 0·034 0·016 0·00731 0·00345

0·1 0·0831 0·0504 0·0261 0·0122 0·00554 0·0026

1 corresponds to the minimal and curve 4 to the maximal viscosity (see (4.3)). The value
of µ0 is 10 times more for curve 2 than for curve 3. However, the maximal velocity for the
second case is essentially greater. It results from the difference of values of σc. The viscosity
in the transition zone grows in the third case and slows down the convective motion due to
the effective interfacial tension. The displacement is maximal in the case µ0 = 0·01, σc = 0
(curve 1) and minimal for µ0 = 0·1, σc = 5 (curve 4, Figure 4b). The distance between
curves 2 and 3 remains practically constant after the initial period of the simulations. The
displacement growth is fast in the beginning and it slows down in time because the driving
force decreases due to diffusion. After the first 10 minutes it reaches about 75% of its value
observed after 60 minutes. In the most realistic case µ0 = 0·01, σc = 5 (curve 3) it is about
1 cm, and it should be possible to observe it experimentally.

The velocity field and the numerical mesh (with each second mesh line) are shown in
Figure 5. There is one vortex from each side of the transition zone with the upper vortex
being essentially weaker than the lower one because of the viscosity dependence on c. The
deformation of the numerical mesh in the lower part of the domain is stronger than in the upper
part because the fluid velocity there is larger (Figure 5b). The liquid motion along the central
line is directed from the side with a higher temperature to the side with a lower temperature.
This corresponds to the decrease of the effective interfacial tension due to the temperature
dependence k(T ). We note that the vortex in the upper part of the domain where the liquid is
more viscous increases in time while the vortex in the less viscous liquid decreases.

Isolines of the temperature (“vertical” lines) and of the composition (“horizontal” lines) are
shown in Figure 6. The isotherms change in time being more curved in about 50–100 seconds
because of the convection (Figures 6a,b). The temperature distribution becomes more close
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Figure 5. Stream function (a) and numerical mesh (b) after 1000 s; k0 = 1·17 × 10−6 N, k1 = 0·63 × 10−6 N,
µ0 = 0·01 Pa · s, σc = 5, σT = 0, d0 = 2·5 × 10−5 kg/(m · s), d1 = 0.

to a linear one for large time (Figure 6c). Finally the isolines of the concentration show that
the transition zone is larger in the left part of the domain where the vortices are directed from
the central part outside, and it is narrower in the right part of the domain where the diffusion
is upwind. Therefore the change in the width of the transition zone due to the convection
acts to compensate the difference in the effective interfacial tension related to the nonuniform
temperature distribution.

This means that not only diffusion decreases the interfacial tension in miscible liquids
but also convection. In about 10 hours of the physical time the system practically reaches
the steady state where the temperature distribution is linear, the composition distribution is
uniform in space, and the liquid velocity is zero.

If we decrease the initial width of the transition zone and at the same time decrease pro-
portionally k(T ), we can expect that the behavior of the system will be the same because
the effective interfacial tension can be estimated as k(T )/δ. However, the numerical simu-
lations show that the maximal velocity and displacement are essentially less in this case. A
possible explanation of this effect is connected with the influence of diffusion. If the width
of the transition zone is less, i.e., the composition gradients are greater, diffusion will be also
faster and the effective interfacial tension will decrease more rapidly. Decreasing the diffusion
coefficient, we obtain greater values of the velocity and of the displacement.
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Figure 6. Isolines of the temperature (“vertical”) and of the composition (“horizontal”), a - 100 s, b - 500 s, c -
1000 s (the same values of parameters as for Figure 5).

Figure 7. Level lines of the stream function for the oscillating regime, a - 7000 s, b - 9000 s, c - 11000 s, d -
13000 s; k0 = 0·975 × 10−6 N, k1 = 0·125 × 10−6 N, µ0 = 0·01 Pa · s, σc = 5, σT = 0, d0 = 10−7 kg/(m · s),
d1 = 0.
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Figure 8. Comparison of the maximal displacement for k(T ) and d(T ); k0 = 1·3 × 10−6 N, µ0 = 0·1 Pa · s,
d0 = 10−5 kg/(m · s), 1 - k1 = 0·7 × 10−6 N, σc = 0, σT = 0, d1 = 0, 2 - k1 = 0·7 × 10−6 N, σc = 5,
σT = 0, d1 = 0, 3 - k1 = 0·7 × 10−6 N, σc = 5, σT = 5, d1 = 0, 4 - k1 = 0·7 × 10−6 N, σc = 0,
σT = 0, d1 = 4 × 10−5 kg/(m · s), 5 - k1 = 0·7 × 10−6 N, σc = 5, σT = 0, d1 = 4 × 10−5 kg/(m · s), 6 -
k1 = 0·7 × 10−6 N, σc = 5, σT = 5, d1 = 4 × 10−5 kg/(m · s).

Figure 9. Isolines of the temperature (“vertical”) and of the composition (“horizontal”) in the case of the temper-
ature dependent diffusion coefficient, a - 100 s, b - 500 s, c - 5000 s; k0 = 1·3 × 10−6 N, k1 = 0, µ0 = 0·1 Pa · s,
σc = 5, σT = 0, d0 = 10−5 kg/(m · s), d1 = 4 × 10−5 kg/(m · s).
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Figure 10. Level lines of the composition and of the stream function in the isothermal case with a variable
transition zone, a - 1 s, b - 500 s, c - 5000 s; ε1 = 0·2mm, ε2 = 5mm, k0 = 1·95 × 10−9 N, k1 = 0,
µ0 = 0·002 Pa · s, σc = 5, σT = 0, d0 = 10−7 kg/(m · s), d1 = 0.

4.2. OSCILLATIONS

For larger values of k than were considered in the previous subsection the qualitative behavior
of the system can be different. The vortex in the lower part of the reactor, where the liquid
is less viscous becomes stronger and leads to appearance of a counter vortex (Figure 7a).
It becomes stronger with time while the intermediate vortex weakens. Therefore, the com-
pensating action of convection also weakens. After some time the difference in the effective
interfacial tension at the left and at the right increases again, resulting in a subsequent increase
of the convective motion near the interface. The intermediate vortex increases eliminating the
new vortex. This is a possible physical mechanism of the oscillations observed numerically
(Figures 7a–d). The oscillations are decaying since the effective interfacial tension decreases
due to diffusion.

4.3. d DEPENDS ON TEMPERATURE

In the previous subsection we have studied the case where the Korteweg coefficient is tem-
perature dependent while the diffusion coefficient is constant. As we have already discussed
in the introduction, there are two possible mechanisms how the effective interfacial tension in
miscible liquids with a constant density can depend on the temperature: through the tem-
perature dependence of k or through the temperature dependence of d. The experimental
investigation of the dependence k(T ) appears to be very difficult and the results are not well
reproducible because of the transient character of these phenomena. On the other hand, the
temperature dependence of the diffusion coefficient is easier to measure. In this subsection we
study the model (3.1)–(3.4) with a constant k and with the diffusion coefficient depending on
the temperature.

We note first of all that the qualitative behavior of the maximal displacement and of the
maximal velocity in time is the same as described in Section 4.1 (Figure 8). The flow at the
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Figure 11. Displacement of the drop; k0 = 1·3 × 10−6 N, µ0 = 0·1 Pa · s, σT = 0, d0 = 10−5 kg/(m · s).
Position of the central node in time, 1 - k1 = 0·7 × 10−6 N, σc = 0, d1 = 0, 2 - k1 = 0·7 × 10−6 N, σc = 5,
d1 = 0, 3 - k1 = 0, σc = 0, d1 = 4 × 10−5 kg/(m · s), 4 - k1 = 0, σc = 5, d1 = 4 × 10−5 kg/(m · s), 4a -
Position of the center of mass in time (for the same parameters as 4).

transition zone is directed from the right where the temperature is greater to the left where it
is less. It is related to the fact that the diffusion coefficient increases with the temperature, and
the width of the transition zone is greater near the right wall than near the left one (Figure 9)
contrary to what we have seen before (cf. Figure 6). Therefore there exists a force directed
along the interface from the right to the left.

The width of the transition zone can be roughly estimated as
√

dt , where d is the diffusion
coefficient and t time. Therefore the effective interfacial tension is proportional to k/(

√
dt).

Thus if the change of k(T ) when we change T from the minimal to the maximal value is
the same as the change of

√
d(T ), we can expect that the results are close. We compare the

results in Figure 8. Curves 2 and 5 are really close to each other, while the difference in curve
1 and 4, 3 and 6 is larger but still they give a reasonable agreement taking into account that
the arguments above are only qualitative.

Thus, in both cases where one of the coefficients k and d is temperature dependent and
another one is constant, the convection appears in the initially unmovable medium. The flow
patterns are rather similar qualitatively and even quantitatively.

5. Other configurations

5.1. VARIABLE TRANSITION ZONE

In this section we model another experimental configuration. The system is isothermal, and
the width of the transition zone between two liquids varies in space. It equals ε1 from the left,
ε2 from the right, and it changes linearly as a function of x (see Figure 3).

The qualitative behavior of the system is the same as before. The effective interfacial
tension directed along the transition zone creates a convective motion.

Figure 10 shows the evolution of the composition and of the stream function. Initially the
width of the transition zone increases linearly from the left to the right.



336 N. Bessonov et al.

Figure 12. Evolution of the level lines of the stream function for the moving drop (upper half-drop), a - 2 s, b -
20 s, c - 2000 s; dashed lines - level lines of the composition c = 0·1, c = 0·2, c = 0·3; k0 = 1·3 × 10−6 N,
k1 = 0·7 × 10−6 N, µ0 = 0·1 Pa · s, σc = 5, σT = 5, d0 = 10−5 kg/(m · s), d1 = 0.

After some time the convection makes it practically the same from both sides of the reactor
though the transition zone is slightly curved. In 10 hours the velocity decrease is about four
orders of magnitude and the composition distribution becomes almost uniform.

It is interesting to note that a ten-fold increase of the Korteweg coefficient changes the final
displacement by a factor of about two.
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Figure 13. Evolution of the level line c = 0·01 of the composition (the same values of parameters as in Figure 12).

5.2. MOTION OF DROPS

In this section we discuss the behavior of miscible drops in a temperature gradient. In the
case of immiscible liquids a drop moves in the temperature gradient to the place where the
temperature is greater. It appears that the behavior of miscible drops is qualitatively the same.
Figure 11 shows the motion of the drop in time where we plot the coordinate of the central
node of the drop (curves 1–4) or the center of mass (curve 4a). The displacement is larger in
the case of a constant viscosity. In the case σc = 5 the liquid inside the drop is more viscous
than the surrounding liquid, and it slows down the convective motion. The motion of the drop
itself also slows down.

We note that the central node of the drop moves monotonically from the left to the right
and practically stops for t > 8000 s when the drop is basically dissolved, and the effect-
ive interfacial tension becomes negligible. At the same time the center of mass begins to
move backwards because it should return to the center of the domain when the composition
distribution becomes homogeneous in space.

The flow pattern is shown in Figure 12. We note that the pressure inside the drop is
practically constant and is essentially higher than outside of the drop. Therefore there is a
pressure jump at the transition zone; this fact known for immiscible drops and predicted in
[2] for miscible drops. The drop diffuses (Figure 13), and after some time the concentration
distribution becomes homogeneous in space.

6. Concluding remarks

In this work we study theoretically behavior of miscible liquids in order to show that there
exists an effective interfacial tension between them. If initially the liquids are separated in
space, then a diffuse interface separating them exists though its width grows with time. At
the first stage of the process where the concentration gradients are sufficiently high, we can
expect a behavior similar to that for immiscible liquids.

Numerical simulations based on the model that includes the heat equation and the diffusion
equation with convective terms, and the Navier-Stokes equations with the Korteweg stress are
carried out for several configurations corresponding to microgravity experiments planned for
the International Space Station with realistic values for the essential parameters. In particular,
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if a temperature gradient is applied along the diffuse interface, then a convective motion in
the initially unmovable medium appears similar to the surface tension induced convection
well known in the immiscible case. According to the numerical results this convection can be
observed experimentally.

We also simulate a miscible drop in a temperature gradient and show that a drop will
migrate as an immiscible is known to do.

Future work includes studying how gradients in concentration along the diffuse interface
and how variations in the width of the interface can cause convection.
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